Ruminations on jet quenching in context (primarily) of ATLAS measurements

Prof. Brian. A Cole Columbia University

BNL High-pT workshop

Alas, the keynote file for my talk was corrupted and (unusually for me) I have no backup. I will use slides from Aaron's talk at Santa Fe workshop as basis for my talk with a few additions in pdf file.

Jet Tomography

- Often stated goal of jet quenching studies is to use jets to probe the structure of the QGP
- Temptation is often to proceed in strict analogy with QED

 In QED in <u>radiative regime</u>, interaction characterized by <u>single scale</u> (radiation length)

Jet Tomography

- Know from generations of QCD phenomenology that jets emerge from hard scattering processes with large virtuality and that they radiate copiously as they evolve back on shell
- Pattern of radiation is known as the <u>parton shower</u>
 - Enhancement of higher order radiation (large logs) arising from separation of scales between initial and final jet virtuality
 - Evolution of parton is virtuality ordered
- Jet is a coherent object and emissions are angular ordered

- E-loss not obviously characterized by single scale, probe has hierarchy of scales...
- What is the relationship between these scales and those set by the medium?
 - To what extent does medium resolve jet?
- Need to understand this well before phenomenon can be used to "measure" the medium scales

Flavor Dependence of Jet Energy Loss

- Properties of jets, final momentum distribution of hadrons w/in jet,
 sensitive to whether initial parton is a quark or gluon
 - "Gluon jets" wider, less likely to have high z leading fragment and have larger multiplicity
 - Distinction is only strict in LO picture (or LO+PS)
- ► May expect gluons to receive 9/4 enhancement in E-loss due to color factor

Detailed analysis of this in the context of PYTHIA Cole and Spousta,1504.05169 [hep-ph]

But if medium resolves jet how much does initial flavor matter?

Can study this by varying mixture of of *q/g* initiated jets

Coherence Approach to Quenched Jets

- Recent theoretical advances in coherence based approach
 - Combined effects of vacuum (virtuality and angular ordered) and inmedium (time ordered, angular anti-ordered) cascades
- ► Medium resolves jets to some scale (/I_{med})
- Does not see jet substructure on smaller length scales, only total color charge, i.e. coherent substructures

- → Depending on details of parton shower medium resolves jet into <u>number</u> of effective emitters
- Jets with different parton showers (categorizable by their substructures) are quenched differently

Example of non-trivial jet structure

Gluon Fractions: Single Jets

Flavor of jet defined to be highest p_T parton w/in R of jet

- Note that PDFs and flavor fractions are only indirectly related
 - ► Fractions extracted from generator which has initial and final state parton showers that may change flavor/kinematics of parton-level jets

- ► Two generators (e.g. PYTHIA and HERWIG) that have different PS implementations will not necessarily give the same flavor fractions even if they use the same input PDFs
- ► Also the *tune* of the generator matters, e.g. α_s used in ISR

Gluon fractions: Dijets

 Naive expectation, Quark-Gluon configuration expected to show largest asymmetry on average

Partonic Fragmentation Functions

 At fixed hadron p_T, expect different mixture of q/g than for inclusive jets

Single Jet Observables: p_T Dependence

- R_{AA} for charged hadrons
- Can see more of flattening trend in latest ATLAS measurement

Qualitatively similar to flatness observed in jet *R*_{AA}

Single Jet Observables: Rapidity Dependence

- Increasing rapidity results in a steeper production spectrum (lower R_{AA} at fixed energy loss)
- But higher fraction of quark jets (lower energy loss, higher RAA for fixed spectral slope)

Single Jet Observables: Rapidity Dependence

 Neither shows large variation with rapidity suggestion effects mostly cancel

Single Jet Observables: Rapidity Dependence

- p_T , centrality and y dependence of R_{AA} well described by recent calculations

 R_{AA} larger at forward rapidity ⇒ increasing quark fraction wins out over increasing steepness of spectrum

Vitev, arXiv:1601.00015

Importance of q/g fraction

PYTHIA8 AU2, CT10

0.4 0.2 -1.2<|y|<2.1 -|y|<2.1 -0.3<|y|<0.8 -|y|<0.3 p_{T,jet} [GeV]

Spousta, BAC Eur.Phys.J. C76 (2016)

- "Toy++" quenching model:
 - pT dependence of R_{AA} at high p_T driven by variation in the quark fraction
 - ⇒important to constrain q/g energy loss
- boson + jet helpful (much larger quark fraction)
 - ⇒even jet R_{AA} in boson events

Jet Structure: Rapidity Dependence

New fragmentation measurement

- Includes pp reference using high stat. 2013 run
 - Significant improvement in ratios at high z

Jet Structure: Rapidity Dependence

New fragmentation measurement

- Includes pp reference using high stat. 2013 run
 - Significant improvement in ratios at high z
- Modifications at high z
 observed to be significant
 for first time

Jet Structure: Rapidity Dependence

New fragmentation measurement

- Includes *pp* reference using high stat. 2013 run
 - Significant improvement in ratios at high z
- Modifications at high z
 observed to be significant
 for first time
- Jet p_T and η dependence
 - Unmodified distributions for quark and gluon jets very different
 - Modifications at high z weaker at larger n
 - Higher quark fraction?

ATLAS-CONF-2015-055

Jet structure : p_T dependence

 Modifications at high z are less strong at larger p_T

Importance of q/g fraction

- Much of the modification of inclusive FF and its centrality dependence can be explained by change in q/g fraction due to energy loss
 - "trivial" effect that must be present and should be accounted for in any calculation

q/g fraction: eta dependence

- Hints that expected η dependence due to q/g fraction is seen in data
 - ⇒But, properly, need to account for correlated syst. uncertainties in data.

Low-z excess

Van Leeuwen, arXiv: 1511.06108

Casalderrey-Solana et al, JHEP 1603 (2016) 053

- Analysis using JEWEL suggests the low-z excess due to collisional recoils.
- Hybrid strong coupling model does not produce low-z excess when medium response not included.
 - ⇒Hugely important if there is a kinematic region where medium response is "separable".

Fragmentation angular distribution

- This measurement is crucial
 - Particularly need to see the ratios for different p_T.
 - ⇒ separate regions of low-z excess, depletion
 - ⇒ but, also need to control for changes in q/g ratio

Jet Energy loss: Dijet asymmetry

$100 < p_{T1} < 126 \text{ GeV}, x_J = p_{T2} / p_{T1}$

- Fully unfolded in two-dimensional p_{T2} p_{T1} space and projected onto x_J
 - Can be directly compared to theory
- In pp collisions, most probable dijet configuration is x_J~1, balanced dijets
- In central Pb+Pb collisions most probable configuration for dijets is for one jet to have HALF as much energy as the other
 - Qualitative change in dijet behavior general feature of central HI collisions

Dijets: p_{T1} and Possible Flavor Dependence

For dijets, qq/gg/qg composition of pairs changes with p_{T1}

 p_{T1} evolution more abrupt than for single jets, e.g. R_{AA} shows very weak p_{T} dependence

Much less modification at higher p_T

Single Jets: Geometry Dependence

- Jet yields observed to depend on angle wrt second order event plane : $\Delta \phi = \phi - \psi_2$

In/out-of-plane differences
 consistent with second
 harmonic modulation which
 is consistent w/ simple
 assumptions of L² E-loss
 and expanding medium

Dijets: Geometry Dependence

$A_{J} = (p_{T1} - p_{T2}) / (p_{T1} + p_{T2})$ (not unfolded)

Very small, but significant anti-correlation between EP angle and < A_J >

< A_J > smaller for dijets in the direction of EP which see shorter path lengths

Shows second harmonic modulation

Constrains extent to which asymmetry determined by geometry

ATLAS-CONF-2015-021

Radiative Corrections to qhat

- Resummation of radiative corrections yields anomalous dimension for qhat
- Implies anomalous dimension for path length dependence

- Analysis predicts a path length dependence between pQCD radiative energy loss (L²) and AdS strong coupling (L³)
 - Tantalizing possibility to connect strong and weak coupling limits
- Can we observe effect of anomalous dimension through
 - More precise measurements?
 - Selection on kinematics to enhance contribution?

Geometry and Jet Quenching: Next Steps

LHC Run 1 results showed improvments in determination of event-by-event geometry

Classify events both by centrality and ellipticity : $|q_2|$

Running out of statistics for this in run 1...

<A_J> also has very small signal ...

ATLAS-CONF-2015-021

Multi-jets in Heavy Ion Collisions

- LHC run 2 should benefit much higher rates of complicated radiation patterns
 - Nearby jets see similar path lengths and density fluctuations
 - Have correlated color structure
 - k_t / opening angle of splitting sets scale to probe medium

- ► First measurement of conditional yields of nearby jets performed by ATLAS could benefit hugely/be expanded
- Conditional yields are suppressed in central collisions

Summary

- There has been significant recent theoretical progress -- reason for optimism.
 - However, we still can't claim to "understand" even the most basic jet measurements (yet).
 - -Important to account for "trivial" effects
 - ⇒Such as q/g changes due to quenching
- Specific issues:
 - -low-z fragmentation excess an opportunity?
 - ⇒Recoil/medium feedback?
 - -role of flavor, geometry vs fluctuations in dijets
 - ⇒Implications of p_T dependence in ATLAS data?
 - ⇒dijet asymmetry vs Δφ
 - -jet structure/mass/angular scale
 - ⇒clearly the next step, but small R an issue

Observing Coherence Effects with Jet Pull?

- Observable sensitive to color flow: jet pull vector
 - **Example here is for** distinguishing b bbar final states

•→ Pull (vector)(J₁)
θ_P Pull Angle Constituent of J₁ (size weighted by p_T)

Fig. from PLB (2015) 475-493

Particle production on axis connecting jets

Color connection between jet and beam remnants

Summary

- See stronger quenching effects in kinematic regions where they are expected from underlying flavor fractions
 - Aspects of this puzzle (e.g. R_{AA}) already well described by theoretical calculations
- Needs full theoretical treatment to sort this out
 - Can be improved using new experimental results
 - Updated NPDF input from LHC measurements
 - Comparisons to unfolded x_J distributions ⇒ additional benchmark
- Flavor just one way of selecting jets with different parton showers
 - Measuring quenching observables for jets tagged by substructure properties could also address this
 - Multi-jets and observables sensitive to color flow also promising
 - Both get at role of decoherence in energy loss
- See geometric dependence consistent w/ L² path length dependence
 - Can we see deviations in Run 2?

Extras

Key Experimental Challenge: Jet Response

Jet energy scale (JES): shift in mean response

Jet energy resolution (JER): width of response distribution

Receive contributions both from UE and from detector

JES/JER convenient measures of response
How well known they are often dominant systematic

In ATLAS use "data overlay" generator jets embedded in real HI events

UE contributions to jets described ~exactly

Key Experimental Challenge: Jet Response

Determine JES uncertainty on MC response through data-driven studies (*in situ* contribution)

Fractional JES uncertainty

"Data period"
uncertainty arises
from fact that pp an
Pb+Pb data taken in
different years and
calorimeter response
may have changed

Will not be present in run 2 since *pp* reference run was taken ~concurrently!

Residual contributions from fact that response is different for quark and gluon jets and may be different for quenched jets